
Audit Report
Findex Exchange
December 2023

Network ETH

TokenContract 0xb77bC8B14D6F12a5B847379bA4eE5119564cB1b6

TokenVesting 0xFA6526E7AA86178995F51689F334646620D76247

Audited by © cyberscope

Findex Exchange Token Audit 1

Table of Contents
Table of Contents 1
Review 3

Audit Updates 3
Source Files 3

Overview 5
Findings Breakdown 6
Diagnostics 7

EIS - Excessively Integer Size 8
Description 8
Recommendation 8

OO - Operator Optimization 9
Description 9
Recommendation 9

PSU - Potential Subtraction Underflow 10
Description 10
Recommendation 10

CR - Code Repetition 11
Description 11
Recommendation 11

PCI - Percentage Calculation Inconsistency 12
Description 12
Recommendation 13

MCM - Misleading Comment Messages 14
Description 14
Recommendation 14

MU - Modifiers Usage 15
Description 15
Recommendation 15

RSW - Redundant Storage Writes 16
Description 16
Recommendation 16

MEE - Missing Events Emission 17
Description 17
Recommendation 17

L04 - Conformance to Solidity Naming Conventions 18
Description 18
Recommendation 18

L13 - Divide before Multiply Operation 19
Description 19

Findex Exchange Token Audit 2

Recommendation 19
L16 - Validate Variable Setters 20

Description 20
Recommendation 20

L19 - Stable Compiler Version 21
Description 21
Recommendation 21

Functions Analysis 22
Inheritance Graph 24
Flow Graph 25
Summary 26
Disclaimer 27
About Cyberscope 28

Findex Exchange Token Audit 3

Review

Explorer (TokenVesting) https://etherscan.io/address/0xFA6526E7AA86178995F51689F3

34646620D76247

Explorer (TokenContract) https://etherscan.io/address/0xb77bC8B14D6F12a5B847379bA

4eE5119564cB1b6

Audit Updates

Initial Audit 04 Dec 2023

Source Files

Filename SHA256

TokenVesting.sol 78fb9ce7591f94d93de84b2160316b2366

5df25acf6087af0930ef5414cabbe0

TokenContract.sol 28d26029eba1faf6e0af9a543a3ad12e649

177df4c01df2c4c7f853c3673058e

@openzeppelin/contracts/utils/Strings.sol cb2df477077a5963ab50a52768cb74ec6f3

2177177a78611ddbbe2c07e2d36de

@openzeppelin/contracts/utils/Context.sol 1458c260d010a08e4c20a4a517882259a2

3a4baa0b5bd9add9fb6d6a1549814a

@openzeppelin/contracts/utils/math/SignedMath.s

ol

420a5a5d8d94611a04b39d6cf5f0249255

2ed4257ea82aba3c765b1ad52f77f6

@openzeppelin/contracts/utils/math/Math.sol 85a2caf3bd06579fb55236398c1321e15fd

524a8fe140dff748c0f73d7a52345

@openzeppelin/contracts/utils/introspection/IERC

165.sol

701e025d13ec6be09ae892eb029cd83b30

64325801d73654847a5fb11c58b1e5

https://etherscan.io/address/0xFA6526E7AA86178995F51689F334646620D76247
https://etherscan.io/address/0xFA6526E7AA86178995F51689F334646620D76247
https://etherscan.io/address/0xb77bC8B14D6F12a5B847379bA4eE5119564cB1b6
https://etherscan.io/address/0xb77bC8B14D6F12a5B847379bA4eE5119564cB1b6

Findex Exchange Token Audit 4

@openzeppelin/contracts/utils/introspection/ERC1

65.sol

8806a632d7b656cadb8133ff8f2acae4405

b3a64d8709d93b0fa6a216a8a6154

@openzeppelin/contracts/token/ERC20/IERC20.sol 7ebde70853ccafcf1876900dad458f46eb9

444d591d39bfc58e952e2582f5587

@openzeppelin/contracts/token/ERC20/ERC20.sol d20d52b4be98738b8aa52b5bb0f88943f6

2128969b33d654fbca731539a7fe0a

@openzeppelin/contracts/token/ERC20/extensions

/IERC20Metadata.sol

af5c8a77965cc82c33b7ff844deb9826166

689e55dc037a7f2f790d057811990

@openzeppelin/contracts/token/ERC20/extensions

/ERC20Burnable.sol

0344809a1044e11ece2401b4f7288f414ea

41fa9d1dad24143c84b737c9fc02e

@openzeppelin/contracts/access/Ownable.sol a8e4e1ae19d9bd3e8b0a6d46577eec098c

01fbaffd3ec1252fd20d799e73393b

@openzeppelin/contracts/access/IAccessControl.s

ol

d03c1257f2094da6c86efa7aa09c1c07ebd

33dd31046480c5097bc2542140e45

@openzeppelin/contracts/access/AccessControl.s

ol

afd98330d27bddff0db7cb8fcf42bd4766d

da5f60b40871a3bec6220f9c9edf7

Findex Exchange Token Audit 5

Overview

The Findex Exchange ecosystem consists of a token contract named “TokenContract” and

a token vesting contract named “TokenVesting”. The “TokenContract” is an ERC-20 token

that extends the OpenZeppelin ERC-20 and ERC-20Burnable contracts, incorporating basic

token functionalities with burn capabilities. It also includes an ownership management

system through the Ownable contract, allowing the contract owner to blacklist specific

addresses and burn tokens associated with blacklisted addresses. Transfer functions are

modified to restrict transactions involving blacklisted addresses.

On the other hand, the “TokenVesting” contract is designed for managing token allocations

and vesting schedules. It utilizes the OpenZeppelin AccessControl contract to enforce

role-based access control. The contract supports various allocation types, such as

Ecosystem, Advisors, Marketing, Partners, Presale, Private1, Private2, and Public, each with

its own lockup period and vesting schedule. The contract includes functions to set

allocations for specific addresses, cancel allocations during a specified cancellation period,

and allow recipients to claim their allocated tokens based on predefined vesting rules.

Additionally, there are functions to burn tokens allocated for specific purposes, with

conditions related to the contract's lockup and vesting periods.

Both contracts aim to provide a robust and flexible framework for managing token-related

activities, including transfers, blacklisting, allocations, and vesting schedules. The

“TokenVesting” contract, in particular, offers a comprehensive solution for handling different

types of token allocations, catering to specific roles and time-based conditions.

Findex Exchange Token Audit 6

Findings Breakdown

⬤ Critical 0

⬤ Medium 0

⬤ Minor / Informative 13

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 13 0 0 0

Findex Exchange Token Audit 7

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ EIS Excessively Integer Size Unresolved

⬤ OO Operator Optimization Unresolved

⬤ PSU Potential Subtraction Underflow Unresolved

⬤ CR Code Repetition Unresolved

⬤ PCI Percentage Calculation Inconsistency Unresolved

⬤ MCM Misleading Comment Messages Unresolved

⬤ MU Modifiers Usage Unresolved

⬤ RSW Redundant Storage Writes Unresolved

⬤ MEE Missing Events Emission Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L13 Divide before Multiply Operation Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L19 Stable Compiler Version Unresolved

Findex Exchange Token Audit 8

EIS - Excessively Integer Size

Criticality Minor / Informative

Location TokenVesting.sol#L157,166,175,226,235

Status Unresolved

Description

The contract is using a bigger unsigned integer data type than the maximum size that is

required. By using an unsigned integer data type larger than necessary, the smart contract

consumes more storage space and requires additional computational resources for

calculations and operations involving these variables. This can result in higher transaction

costs, longer execution times, and potential scalability bottlenecks.

For instance, the october1_2024 variable can be stored in a log2(1727730000) =

30.68 -> uint32 variable.

uint256 october1_2024 = 1727730000;

uint256 september23_2024 = 1727049600;

Recommendation

To address the inefficiency associated with using an oversized unsigned integer data type, it

is recommended to accurately determine the required size based on the range of values the

variable needs to represent.

Findex Exchange Token Audit 9

OO - Operator Optimization

Criticality Minor / Informative

Location TokenVesting.sol#L94

Status Unresolved

Description

There are code segments that could be optimized. A segment may be optimized so that it

becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer

operations.

In the contract, there is a requirement check on certain variables, which are of type uint256.

The condition checks if is zero is less than these variables. However, since the variables are

unsigned integers (uint256), their value is always greater than or equal to zero by default.

Therefore, using the “<” operator can be optimised, by replacing it with the “!=” operator.

require(0 < amount_, 'Allocated amount must be greater than 0');

Recommendation

The team is advised to take these segments into consideration and rewrite them so the

runtime will be more performant. That way it will improve the efficiency and performance of

the source code and reduce the cost of executing it.

Findex Exchange Token Audit 10

PSU - Potential Subtraction Underflow

Criticality Minor / Informative

Location TokenVesting.sol#L106

Status Unresolved

Description

The contract subtracts two values, the second value may be greater than the first value if

the contract's authorized address misuses the configuration. As a result, the subtraction

may underflow and cause the execution to revert.

allocationTypes[uint256(allocationType)].availableAmount -= amount_;

Recommendation

The team is advised to properly handle the code to avoid underflow subtractions and

ensure the reliability and safety of the contract. The contract should ensure that the first

value is always greater than the second value. It should add a sanity check in the setters of

the variable or not allow executing the corresponding section if the condition is violated.

Findex Exchange Token Audit 11

CR - Code Repetition

Criticality Minor / Informative

Location TokenVesting.sol#L154,223

Status Unresolved

Description

The contract contains repetitive code segments. There are potential issues that can arise

when using code segments in Solidity. Some of them can lead to issues like gas efficiency,

complexity, readability, security, and maintainability of the source code. It is generally a

good idea to try to minimize code repetition where possible.

uint256 newPercentage = 0;

if (a.allocationType == AllocationType.Ecosystem) {

uint256 october1_2024 = 1727730000;

if (block.timestamp >= october1_2024) {

uint256 periodsAfterOctober = (block.timestamp - october1_2024) /

(10 * MONTH);

newPercentage = 25 * (periodsAfterOctober + 1);

if (newPercentage > 100) {

newPercentage = 100;

}

}

} else if (a.allocationType == AllocationType.Marketing) {

...

Recommendation

The team is advised to avoid repeating the same code in multiple places, which can make

the contract easier to read and maintain. The authors could try to reuse code wherever

possible, as this can help reduce the complexity and size of the contract. For instance, the

contract could reuse the common code segments in an internal function in order to avoid

repeating the same code in multiple places.

Findex Exchange Token Audit 12

PCI - Percentage Calculation Inconsistency

Criticality Minor / Informative

Location TokenVesting.sol#L174,234

Status Unresolved

Description

The functions claimTokens and canClaimTokens in the contract display an

inconsistency in the calculation of the claimable amount percentage when the allocation

type is set to AllocationType.Public . In the claimTokens function, the

percentage is assigned to 100 if the current date is greater than 23 September 2024.

However, in the canClaimTokens function, the percentage is calculated proportionally

based on the number of quarters passed since 23 September 2024. This inconsistency may

lead to users receiving conflicting indications of whether they can claim their tokens or not.

else if (a.allocationType == AllocationType.Public) {

uint256 september23_2024 = 1727049600;

if (block.timestamp >= september23_2024) {

newPercentage = 100;

}

}

else if (a.allocationType == AllocationType.Marketing || a.allocationType

== AllocationType.Public) {

uint256 september23_2024 = 1727049600;

if (block.timestamp >= september23_2024) {

uint256 quartersAfterSeptember = (block.timestamp -

september23_2024) / (3 * MONTH);

newPercentage = 10 + (30 * quartersAfterSeptember);

if (newPercentage > 100) {

newPercentage = 100;

}

}

}

Findex Exchange Token Audit 13

Recommendation

The team is advised to ensure consistency in the percentage calculation for public

allocations by aligning the percentage calculation in both the claimTokens and

canClaimTokens functions. By aligning the percentage calculation logic, the team will

ensure that users receive consistent information regarding their claiming ability, leading to a

more predictable user experience.

Findex Exchange Token Audit 14

MCM - Misleading Comment Messages

Criticality Minor / Informative

Location TokenVesting.sol#L112

Status Unresolved

Description

The contract is using misleading comment messages. These comment messages do not

accurately reflect the actual implementation, making it difficult to understand the source

code. As a result, the users will not comprehend the source code's actual implementation.

/// Sets allocation for the given recipient with corresponding amount.

function burn(AllocationType allocationType_) public { ... }

Recommendation

The team is advised to carefully review the comment in order to reflect the actual

implementation. To improve code readability, the team should use more specific and

descriptive comment messages.

Findex Exchange Token Audit 15

MU - Modifiers Usage

Criticality Minor / Informative

Location TokenVesting.sol#L96,120,267,276

Status Unresolved

Description

The contract is using repetitive statements on some methods to validate some

preconditions. In Solidity, the form of preconditions is usually represented by the modifiers.

Modifiers allow you to define a piece of code that can be reused across multiple functions

within a contract. This can be particularly useful when you have several functions that

require the same checks to be performed before executing the logic within the function.

_checkRole(_msgSender(), allocationType_);

require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), 'Must have admin role

to refund');

Recommendation

The team is advised to use modifiers since it is a useful tool for reducing code duplication

and improving the readability of smart contracts. By using modifiers to perform these

checks, it reduces the amount of code that is needed to write, which can make the smart

contract more efficient and easier to maintain.

Findex Exchange Token Audit 16

RSW - Redundant Storage Writes

Criticality Minor / Informative

Location TokenContract.sol#L29

Status Unresolved

Description

The contract modifies the state of the following variables without checking if their current

value is the same as the one given as an argument. As a result, the contract performs

redundant storage writes, when the provided parameter matches the current state of the

variables, leading to unnecessary gas consumption and inefficiencies in contract execution.

blacklist[_address] = blacklisted;

Recommendation

The team is advised to implement additional checks within to prevent redundant storage

writes when the provided argument matches the current state of the variables. By

incorporating statements to compare the new values with the existing values before

proceeding with any state modification, the contract can avoid unnecessary storage

operations, thereby optimizing gas usage.

Findex Exchange Token Audit 17

MEE - Missing Events Emission

Criticality Minor / Informative

Location TokenContract.sol#L29TokenVesting.sol#L271,277

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

blacklist[_address] = blacklisted;

require(erc20.transfer(recipientAddress_, balance), 'Cannot transfer

tokens');

recipientAddress_.transfer(address(this).balance);

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

Findex Exchange Token Audit 18

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location TokenContract.sol#L28,32,36

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

address _address

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

Findex Exchange Token Audit 19

L13 - Divide before Multiply Operation

Criticality Minor / Informative

Location TokenVesting.sol#L168,169,190,191,237,238,251,252

Status Unresolved

Description

It is important to be aware of the order of operations when performing arithmetic

calculations. This is especially important when working with large numbers, as the order of

operations can affect the final result of the calculation. Performing divisions before

multiplications may cause loss of prediction.

uint256 quartersAfterSeptember = (block.timestamp - september23_2024) / (3

* MONTH)

newPercentage = 10 + (30 * quartersAfterSeptember)

Recommendation

To avoid this issue, it is recommended to carefully consider the order of operations when

performing arithmetic calculations in Solidity. It's generally a good idea to use parentheses

to specify the order of operations. The basic rule is that the multiplications should be prior

to the divisions.

Findex Exchange Token Audit 20

L16 - Validate Variable Setters

Criticality Minor / Informative

Location TokenVesting.sol#L277

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

recipientAddress_.transfer(address(this).balance)

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

Findex Exchange Token Audit 21

L19 - Stable Compiler Version

Criticality Minor / Informative

Location TokenVesting.sol#L2TokenContract.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.19;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

Findex Exchange Token Audit 22

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

TokenVesting Implementation AccessContr
ol

Public️ ✓ -️

setAllocation Public️ ✓ -️

burn Public️ ✓ -️

cancelAllocation Public️ ✓ -️

claimTokens Public️ ✓ -️

canClaimTokens Public️ -️

refundTokens External️ ✓ -️

refund External️ Payable -️

allocatedAddresses External️ -️

allocationTypes External️ -️

allocation External️ -️

_initAllocationTypes Private ✓

_checkAllocations Private

_checkRole Private

getAvailableTokensForCategory Public️ -️

Findex Exchange Token Audit 23

TokenContract Implementation ERC20,
ERC20Burna
ble, Ownable

Public️ ✓ ERC20

isOwner Public️ -️

blacklistAccount External️ ✓ onlyOwner

isBlacklisted Public️ -️

burnBlackFunds External️ ✓ onlyOwner

transfer Public️ ✓ -️

transferFrom Public️ ✓ -️

Findex Exchange Token Audit 24

Inheritance Graph

Findex Exchange Token Audit 25

Flow Graph

Findex Exchange Token Audit 26

Summary
Findex Exchange contract implements a token and vesting mechanism. This audit

investigates security issues, business logic concerns and potential improvements.

Findex Exchange Token Audit 27

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

